direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: S3×C8.C22, Q16⋊3D6, SD16⋊5D6, C24.4C23, M4(2)⋊11D6, C12.23C24, Dic12⋊3C22, D12.16C23, Dic6.16C23, (S3×Q16)⋊1C2, (C2×Q8)⋊25D6, (S3×SD16)⋊3C2, C4○D4.45D6, (C4×S3).44D4, D6.68(C2×D4), C8.D6⋊3C2, D4.D6⋊3C2, Q16⋊S3⋊1C2, C4.191(S3×D4), C3⋊C8.11C23, C8.4(C22×S3), C24⋊C2⋊5C22, C8⋊S3⋊5C22, C12.244(C2×D4), (S3×M4(2))⋊3C2, (S3×C8).1C22, C4.23(S3×C23), D4.S3⋊6C22, (S3×Q8)⋊11C22, (C6×Q8)⋊20C22, (C3×Q16)⋊1C22, (S3×D4).7C22, C3⋊Q16⋊4C22, C22.48(S3×D4), Q8.14D6⋊10C2, Q8.11D6⋊9C2, (C4×S3).15C23, (C2×Dic3).82D4, Dic3.61(C2×D4), Q8⋊2S3⋊5C22, (C3×SD16)⋊5C22, D4.16(C22×S3), (C3×D4).16C23, C6.124(C22×D4), Q8.26(C22×S3), (C3×Q8).16C23, (C2×C12).114C23, C4○D12.30C22, (C2×Dic6)⋊41C22, (C22×S3).102D4, D4⋊2S3.6C22, (C3×M4(2))⋊5C22, C4.Dic3⋊14C22, Q8⋊3S3.6C22, (C2×S3×Q8)⋊17C2, C2.97(C2×S3×D4), C3⋊4(C2×C8.C22), (S3×C4○D4).4C2, (C2×C6).69(C2×D4), (C3×C8.C22)⋊1C2, (S3×C2×C4).162C22, (C2×C4).98(C22×S3), (C3×C4○D4).25C22, SmallGroup(192,1335)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C8.C22
G = < a,b,c,d,e | a3=b2=c8=d2=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c3, ece=c5, ede=c4d >
Subgroups: 656 in 258 conjugacy classes, 101 normal (51 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), SD16, SD16, Q16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C3⋊C8, C24, Dic6, Dic6, Dic6, C4×S3, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C3×Q8, C22×S3, C22×S3, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C8.C22, C22×Q8, C2×C4○D4, S3×C8, C8⋊S3, C24⋊C2, Dic12, C4.Dic3, D4.S3, Q8⋊2S3, C3⋊Q16, C3×M4(2), C3×SD16, C3×Q16, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, C4○D12, C4○D12, S3×D4, S3×D4, D4⋊2S3, D4⋊2S3, S3×Q8, S3×Q8, S3×Q8, Q8⋊3S3, C6×Q8, C3×C4○D4, C2×C8.C22, S3×M4(2), C8.D6, S3×SD16, D4.D6, S3×Q16, Q16⋊S3, Q8.11D6, Q8.14D6, C3×C8.C22, C2×S3×Q8, S3×C4○D4, S3×C8.C22
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C8.C22, C22×D4, S3×D4, S3×C23, C2×C8.C22, C2×S3×D4, S3×C8.C22
(1 28 45)(2 29 46)(3 30 47)(4 31 48)(5 32 41)(6 25 42)(7 26 43)(8 27 44)(9 35 19)(10 36 20)(11 37 21)(12 38 22)(13 39 23)(14 40 24)(15 33 17)(16 34 18)
(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 33)(16 34)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 19)(18 22)(21 23)(25 27)(26 30)(29 31)(33 35)(34 38)(37 39)(42 44)(43 47)(46 48)
(1 18)(2 23)(3 20)(4 17)(5 22)(6 19)(7 24)(8 21)(9 25)(10 30)(11 27)(12 32)(13 29)(14 26)(15 31)(16 28)(33 48)(34 45)(35 42)(36 47)(37 44)(38 41)(39 46)(40 43)
G:=sub<Sym(48)| (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,33)(16,34)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,19)(18,22)(21,23)(25,27)(26,30)(29,31)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48), (1,18)(2,23)(3,20)(4,17)(5,22)(6,19)(7,24)(8,21)(9,25)(10,30)(11,27)(12,32)(13,29)(14,26)(15,31)(16,28)(33,48)(34,45)(35,42)(36,47)(37,44)(38,41)(39,46)(40,43)>;
G:=Group( (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,33)(16,34)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,19)(18,22)(21,23)(25,27)(26,30)(29,31)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48), (1,18)(2,23)(3,20)(4,17)(5,22)(6,19)(7,24)(8,21)(9,25)(10,30)(11,27)(12,32)(13,29)(14,26)(15,31)(16,28)(33,48)(34,45)(35,42)(36,47)(37,44)(38,41)(39,46)(40,43) );
G=PermutationGroup([[(1,28,45),(2,29,46),(3,30,47),(4,31,48),(5,32,41),(6,25,42),(7,26,43),(8,27,44),(9,35,19),(10,36,20),(11,37,21),(12,38,22),(13,39,23),(14,40,24),(15,33,17),(16,34,18)], [(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,33),(16,34),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,19),(18,22),(21,23),(25,27),(26,30),(29,31),(33,35),(34,38),(37,39),(42,44),(43,47),(46,48)], [(1,18),(2,23),(3,20),(4,17),(5,22),(6,19),(7,24),(8,21),(9,25),(10,30),(11,27),(12,32),(13,29),(14,26),(15,31),(16,28),(33,48),(34,45),(35,42),(36,47),(37,44),(38,41),(39,46),(40,43)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 24A | 24B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 24 | 24 |
size | 1 | 1 | 2 | 3 | 3 | 4 | 6 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 12 | 12 | 12 | 2 | 4 | 8 | 4 | 4 | 12 | 12 | 4 | 4 | 8 | 8 | 8 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D4 | D6 | D6 | D6 | D6 | D6 | C8.C22 | S3×D4 | S3×D4 | S3×C8.C22 |
kernel | S3×C8.C22 | S3×M4(2) | C8.D6 | S3×SD16 | D4.D6 | S3×Q16 | Q16⋊S3 | Q8.11D6 | Q8.14D6 | C3×C8.C22 | C2×S3×Q8 | S3×C4○D4 | C8.C22 | C4×S3 | C2×Dic3 | C22×S3 | M4(2) | SD16 | Q16 | C2×Q8 | C4○D4 | S3 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 |
Matrix representation of S3×C8.C22 ►in GL6(𝔽73)
72 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 51 | 66 | 14 |
0 | 0 | 11 | 0 | 0 | 7 |
0 | 0 | 7 | 0 | 0 | 51 |
0 | 0 | 7 | 66 | 11 | 51 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 2 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 66 | 14 | 51 | 22 |
0 | 0 | 66 | 7 | 62 | 22 |
0 | 0 | 22 | 51 | 66 | 14 |
0 | 0 | 11 | 51 | 66 | 7 |
G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,11,7,7,0,0,51,0,0,66,0,0,66,0,0,11,0,0,14,7,51,51],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,66,66,22,11,0,0,14,7,51,51,0,0,51,62,66,66,0,0,22,22,14,7] >;
S3×C8.C22 in GAP, Magma, Sage, TeX
S_3\times C_8.C_2^2
% in TeX
G:=Group("S3xC8.C2^2");
// GroupNames label
G:=SmallGroup(192,1335);
// by ID
G=gap.SmallGroup(192,1335);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,570,185,438,235,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^8=d^2=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^3,e*c*e=c^5,e*d*e=c^4*d>;
// generators/relations