Copied to
clipboard

G = S3×C8.C22order 192 = 26·3

Direct product of S3 and C8.C22

direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary

Aliases: S3×C8.C22, Q163D6, SD165D6, C24.4C23, M4(2)⋊11D6, C12.23C24, Dic123C22, D12.16C23, Dic6.16C23, (S3×Q16)⋊1C2, (C2×Q8)⋊25D6, (S3×SD16)⋊3C2, C4○D4.45D6, (C4×S3).44D4, D6.68(C2×D4), C8.D63C2, D4.D63C2, Q16⋊S31C2, C4.191(S3×D4), C3⋊C8.11C23, C8.4(C22×S3), C24⋊C25C22, C8⋊S35C22, C12.244(C2×D4), (S3×M4(2))⋊3C2, (S3×C8).1C22, C4.23(S3×C23), D4.S36C22, (S3×Q8)⋊11C22, (C6×Q8)⋊20C22, (C3×Q16)⋊1C22, (S3×D4).7C22, C3⋊Q164C22, C22.48(S3×D4), Q8.14D610C2, Q8.11D69C2, (C4×S3).15C23, (C2×Dic3).82D4, Dic3.61(C2×D4), Q82S35C22, (C3×SD16)⋊5C22, D4.16(C22×S3), (C3×D4).16C23, C6.124(C22×D4), Q8.26(C22×S3), (C3×Q8).16C23, (C2×C12).114C23, C4○D12.30C22, (C2×Dic6)⋊41C22, (C22×S3).102D4, D42S3.6C22, (C3×M4(2))⋊5C22, C4.Dic314C22, Q83S3.6C22, (C2×S3×Q8)⋊17C2, C2.97(C2×S3×D4), C34(C2×C8.C22), (S3×C4○D4).4C2, (C2×C6).69(C2×D4), (C3×C8.C22)⋊1C2, (S3×C2×C4).162C22, (C2×C4).98(C22×S3), (C3×C4○D4).25C22, SmallGroup(192,1335)

Series: Derived Chief Lower central Upper central

C1C12 — S3×C8.C22
C1C3C6C12C4×S3S3×C2×C4C2×S3×Q8 — S3×C8.C22
C3C6C12 — S3×C8.C22
C1C2C2×C4C8.C22

Generators and relations for S3×C8.C22
 G = < a,b,c,d,e | a3=b2=c8=d2=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c3, ece=c5, ede=c4d >

Subgroups: 656 in 258 conjugacy classes, 101 normal (51 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), SD16, SD16, Q16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C3⋊C8, C24, Dic6, Dic6, Dic6, C4×S3, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C3×Q8, C22×S3, C22×S3, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C8.C22, C22×Q8, C2×C4○D4, S3×C8, C8⋊S3, C24⋊C2, Dic12, C4.Dic3, D4.S3, Q82S3, C3⋊Q16, C3×M4(2), C3×SD16, C3×Q16, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, C4○D12, C4○D12, S3×D4, S3×D4, D42S3, D42S3, S3×Q8, S3×Q8, S3×Q8, Q83S3, C6×Q8, C3×C4○D4, C2×C8.C22, S3×M4(2), C8.D6, S3×SD16, D4.D6, S3×Q16, Q16⋊S3, Q8.11D6, Q8.14D6, C3×C8.C22, C2×S3×Q8, S3×C4○D4, S3×C8.C22
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C8.C22, C22×D4, S3×D4, S3×C23, C2×C8.C22, C2×S3×D4, S3×C8.C22

Smallest permutation representation of S3×C8.C22
On 48 points
Generators in S48
(1 28 45)(2 29 46)(3 30 47)(4 31 48)(5 32 41)(6 25 42)(7 26 43)(8 27 44)(9 35 19)(10 36 20)(11 37 21)(12 38 22)(13 39 23)(14 40 24)(15 33 17)(16 34 18)
(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 33)(16 34)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 19)(18 22)(21 23)(25 27)(26 30)(29 31)(33 35)(34 38)(37 39)(42 44)(43 47)(46 48)
(1 18)(2 23)(3 20)(4 17)(5 22)(6 19)(7 24)(8 21)(9 25)(10 30)(11 27)(12 32)(13 29)(14 26)(15 31)(16 28)(33 48)(34 45)(35 42)(36 47)(37 44)(38 41)(39 46)(40 43)

G:=sub<Sym(48)| (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,33)(16,34)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,19)(18,22)(21,23)(25,27)(26,30)(29,31)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48), (1,18)(2,23)(3,20)(4,17)(5,22)(6,19)(7,24)(8,21)(9,25)(10,30)(11,27)(12,32)(13,29)(14,26)(15,31)(16,28)(33,48)(34,45)(35,42)(36,47)(37,44)(38,41)(39,46)(40,43)>;

G:=Group( (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,33)(16,34)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,19)(18,22)(21,23)(25,27)(26,30)(29,31)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48), (1,18)(2,23)(3,20)(4,17)(5,22)(6,19)(7,24)(8,21)(9,25)(10,30)(11,27)(12,32)(13,29)(14,26)(15,31)(16,28)(33,48)(34,45)(35,42)(36,47)(37,44)(38,41)(39,46)(40,43) );

G=PermutationGroup([[(1,28,45),(2,29,46),(3,30,47),(4,31,48),(5,32,41),(6,25,42),(7,26,43),(8,27,44),(9,35,19),(10,36,20),(11,37,21),(12,38,22),(13,39,23),(14,40,24),(15,33,17),(16,34,18)], [(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,33),(16,34),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,19),(18,22),(21,23),(25,27),(26,30),(29,31),(33,35),(34,38),(37,39),(42,44),(43,47),(46,48)], [(1,18),(2,23),(3,20),(4,17),(5,22),(6,19),(7,24),(8,21),(9,25),(10,30),(11,27),(12,32),(13,29),(14,26),(15,31),(16,28),(33,48),(34,45),(35,42),(36,47),(37,44),(38,41),(39,46),(40,43)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D12A12B12C12D12E24A24B
order1222222234444444444666888812121212122424
size112334612222444661212122484412124488888

33 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6D6D6C8.C22S3×D4S3×D4S3×C8.C22
kernelS3×C8.C22S3×M4(2)C8.D6S3×SD16D4.D6S3×Q16Q16⋊S3Q8.11D6Q8.14D6C3×C8.C22C2×S3×Q8S3×C4○D4C8.C22C4×S3C2×Dic3C22×S3M4(2)SD16Q16C2×Q8C4○D4S3C4C22C1
# reps1112222111111211122112111

Matrix representation of S3×C8.C22 in GL6(𝔽73)

72720000
100000
001000
000100
000010
000001
,
100000
72720000
001000
000100
000010
000001
,
100000
010000
0022516614
0011007
0070051
007661151
,
7200000
0720000
001000
0017200
0000722
000001
,
100000
010000
0066145122
006676222
0022516614
001151667

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,11,7,7,0,0,51,0,0,66,0,0,66,0,0,11,0,0,14,7,51,51],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,66,66,22,11,0,0,14,7,51,51,0,0,51,62,66,66,0,0,22,22,14,7] >;

S3×C8.C22 in GAP, Magma, Sage, TeX

S_3\times C_8.C_2^2
% in TeX

G:=Group("S3xC8.C2^2");
// GroupNames label

G:=SmallGroup(192,1335);
// by ID

G=gap.SmallGroup(192,1335);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,570,185,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^8=d^2=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^3,e*c*e=c^5,e*d*e=c^4*d>;
// generators/relations

׿
×
𝔽